Муниципальное бюджетное общеобразовательное учреждение «Центр образования № 49»

Принято	«Утверждаю»
на заседании педагогического	Директор МБОУ «ЦО № 49»
совета	/Плошкина О.Е./
Протокол № <u>6</u> от «31» <u>августа</u> 2021 года	Приказ № <u>55-2-а</u> от «31» <u>августа</u> 2021 года

РАБОЧАЯ ПРОГРАММА

по предмету « Математика» для 10-11классов (базовый уровень)

УМК:

- 1. Ш.А.Алимов, Ю.М.Колягин, М.В.Ткачёва и др., математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10-11 классы: учебник для общеобразовательных организаций: базовый и углублённый уровни, М.: Просвещение
- 2. Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др., математика: алгебра и начала математического анализа, геометрия. Геометрия. 10-11 класс: учебник для общеобразовательных организаций: базовый и углублённый уровни, М.: Просвещение

1. Планируемые результаты освоения учебного предмета

Действительные числа и величины

Выпускник научится:

• оперировать понятием «радианная мера угла», выполнять преобразования радианной меры в градусную и градусной меры в радианную;

Выпускник получит возможность:

• использовать различные меры измерения углов при решении геометрических задач, а также задач из смежных дисциплин;

Выражения

Выпускник научится:

- оперировать понятиями корня п-й степени, степени с рациональным показателем, степени с действительным показателем, логарифма;
- применять понятия корня n-й степени, степени с рациональным показателем, степени с действительным показателем, логарифма и их свойства в вычислениях и при решении задач;
- выполнять тождественные преобразования выражений, содержащих корень n-й степени, степени с рациональным показателем, степени с действительным показателем, логарифм;
- оперировать понятиями: косинус, синус, тангенс, котангенс угла поворота, арккосинус, арксинус, арктангенс и арккотангенс;
- выполнять тождественные преобразования тригонометрических выражений.

Выпускник получит возможность:

- выполнять многошаговые преобразования выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования выражений для решения задач из различных разделов курса.

Уравнения и неравенства

Выпускник научится:

• решать простейшие иррациональные, тригонометрические, показательные и логарифмические уравнения и неравенства;

- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений.

Выпускник получит возможность:

- овладеть приёмами решения уравнений, неравенств и систем уравнений; применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, неравенств, систем уравнений, содержащих параметры.
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей.

Функции

Выпускник научится:

- понимать и использовать функциональные понятия, язык (термины, символические обозначения);
- выполнять построение графиков функций с помощью геометрических преобразований;
- выполнять построение графиков, степенных, тригонометрических, показательных и логарифмических функций;
- исследовать свойства функций;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;
- решать прикладные задачи, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Выпускник получит возможность:

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;
- использовать функциональные представления и свойства функций для решения задач из различных разделов курса математики.

Элементы математического анализа

Выпускник научится:

- понимать терминологию и символику, связанную с понятиями производной, первообразной и интеграла;
- вычислять производную и первообразную функции;
- использовать производную для исследования и построения графиков функций;
- понимать геометрический смысл производной и определённого интеграла;
- вычислять определённый интеграл.

Выпускник получит возможность:

- сформировать представление о пределе функции в точке;
- сформировать представление о применении геометрического смысла производной и интеграла в курсе математики, в смежных дисциплинах;

Комбинаторика. Элементы теории вероятностей. Статистика

Выпускник научится:

- решать комбинаторные задачи на нахождение количества объектов или комбинаций;
- применять формулу бинома Ньютона для преобразования выражений;
- использовать способы представления и анализа статистических данных;
- выполнять операции над событиями и вероятностями.

Выпускник получит возможность:

- научиться специальным приёмам решения комбинаторных задач;
- характеризовать процессы и явления, имеющие вероятностный характер.

Геометрия

Выпускник научится:

• оперировать понятиями: точка, прямая, плоскость в пространстве,

параллельность и перпендикулярность прямых и плоскостей;

- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
- изображать геометрические фигуры с помощью чертёжных инструментов;
- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объёмы и площади поверхностей простейших многогранников с применением формул;
- распознавать тела вращения: конус, цилиндр, сферу и шар;
- вычислять объёмы и площади поверхностей простейших многогранников и тел вращения с помощью формул;
- оперировать понятием «декартовы координаты в пространстве»;
- находить координаты вершин куба и прямоугольного параллелепипеда;
- находить примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России. В повседневной жизни и при изучении других предметов:
- соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
- использовать свойства пространственных геометрических фигур для решения задач практического содержания;
- соотносить площади поверхностей тел одинаковой формы и различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т. п. (определять количество вершин, рёбер и граней полученных многогранников). Выпускник получит возможность научиться:
- применять для решения задач геометрические факты, если условия применения заданы в явной форме;

- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- делать плоские (выносные) чертежи из рисунков объёмных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
- описывать взаимное расположение прямых и плоскостей в пространстве;
- формулировать свойства и признаки фигур;
- доказывать геометрические утверждения;
- задавать плоскость уравнением в декартовой системе координат;
- владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
- использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний;
- решать простейшие задачи введением векторного базиса.

2. Содержание учебного предмета Алгебра и начала математического анализа

Действительные числа и величины

Расширение понятия числа: натуральные, целые, рациональные, действительные. Бесконечно убывающая геометрическая прогрессия.

Корень п-й степени. Арифметический корень натуральной степени. Свойства корня п-й степени. Тождественные преобразования выражений, содержащих корни п-й степени. Вынесение множителя из-под знака корня. Внесение множителя под знак корня.

Степень с рациональным и действительным показателями.

Свойства степени с рациональным показателем. Тождественные преобразования выражений, содержащих степени с рациональным показателем.

Свойства степени с действительным показателем. Тождественные преобразования выражений, содержащих степени с действительным показателем.

Логарифмы. Свойства логарифмов. Тождественные преобразования выражений, содержащих логарифмы.

Радианная мера угла. Связь радианной меры угла с градусной мерой. Косинус, синус, тангенс, котангенс угла поворота.

Основные соотношения между косинусом, синусом, тангенсом и котангенсом одного и того же аргумента. Формулы сложения. Формулы приведения. Формулы двойного угла. Формулы суммы и разности синусов (косинусов). Формулы преобразования произведения в сумму.

Арккосинус, арксинус, арктангенс, арккотангенс.

Простейшие свойства арккосинуса, арксинуса, арктангенса, арккотангенса.

Уравнения и неравенства

Область определения уравнения (неравенства). Равносильные уравнения (неравенства). Равносильные преобразования уравнений (неравенств). Уравнение-следствие (неравенство-следствие). Посторонние корни.

Иррациональные уравнения. Метод равносильных преобразований для решения иррациональных уравнений. Метод следствий для решения иррациональных уравнений.

Показательные уравнения (неравенства). Равносильные преобразования показательных уравнений (неравенств). Показательные уравнения сводящиеся к алгебраическим.

Логарифмические уравнения (неравенства). Равносильные преобразования логарифмических уравнений (неравенств). Логарифмические уравнения (неравенства), сводящиеся к алгебраическим.

Тригонометрические уравнения (неравенства). Основные тригонометрические уравнения и методы их решения. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные уравнения первой и второй степеней. Решение тригонометрических уравнений методом разложения на множители.

Функции

Наибольшее и наименьшее значения функции. Чётные и нечётные функции. Свойства графиков чётной и нечётной функций. Построение графиков функций с помощью геометрических преобразований (параллельных переносов, сжатий, растяжений, симметрий). Связь возрастания и убывания функции с её обратимостью. Взаимно обратные функции. Свойства графиков взаимно обратных функций.

Степенная функция. Степенная функция с натуральным (целым) показателем. Свойства степенной функции с натуральным (целым) показателем. График степенной функции с натуральным (целым) показателем.

Показательная функция. Свойства показательной функции и её график. Логарифмическая функция. Свойства логарифмической функции и её график.

Тригонометрические функции: косинус, синус, тангенс, котангенс. Знаки значений тригонометрических функций. Область определения и множество значений тригонометрических функций. Чётность, нечётность, периодичность тригонометрических функций. Главный период функции. Свойства тригонометрических функций. Графики тригонометрических функций. Свойства графика периодической функции.

Элементы математического анализа

Предел функции в точке. Непрерывность. Промежутки знакопостоянства непрерывной функции. Непрерывность рациональной функции. Метод интервалов. Задачи, приводящие к понятию производной. Производная функции в точке. Производная степенной функции. Производные некоторых элементарных функций. Правила дифференцирования. Механический и геометрический смысл производной. Уравнение касательной к графику функции.

Признаки возрастания и убывания функции. Точки экстремума функции.

Метод нахождения наибольшего и наименьшего значений функции.

Применение производной к построению графиков функций.

Интеграл.

Первообразная функция. Общий вид первообразных. Таблица первообразных функций. Правила нахождения первообразных. Определённый интеграл. Формула Ньютона — Лейбница. Криволинейная трапеция. Методы нахождения площади фигур, ограниченных данными линиями.

Комбинаторика. Элементы теории вероятностей. Статистика

комбинаторные Элементарные задачи, связанные составлением различных комбинаций из имеющихся элементов. Правило произведения. Перестановки. Размещения. Сочетания свойства. Формулы И ИХ перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля.

Элементарные и сложные события. Комбинации событий. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости события. Умножение вероятностей. Вероятность и статистическая частота наступления события. Решение

практических задач с применение вероятностных методов. Случайные величины. Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочерёдный и одновременны выбор нескольких элементов из конечного множества. Центральные тенденции. Меры разброса. Решение практических задач по теме «Статистика».

Геометрия

Введение. Предмет стереометрии

Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

Параллельность прямых и плоскостей

Параллельные прямые в пространстве. Параллельность трёх прямых Параллельность прямой и плоскости. Скрещивающиеся прямые. Угол между прямыми в пространстве. Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур. Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Перпендикулярность прямых и плоскостей

Перпендикулярные прямые В пространстве. Параллельные прямые, перпендикулярные плоскости. Перпендикулярность прямой И плоскости, Перпендикуляр признаки свойства. И наклонная. Теорема перпендикулярах. Расстояние от точки до плоскости. Угол между прямой и плоскостью.

Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми. Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Прямоугольный параллелепипед.

Многогранники

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Выпуклые многогранники.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности.

Прямая и наклонная призма. Правильная призма. Площадь поверхности призмы.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Правильная пирамида. Усеченная пирамида.

Понятие о симметрии в пространстве (центральная, осевая). Примеры симметрий в окружающем мире. Понятие правильного многогранника (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр). Элементы симметрии правильных многогранников.

Векторы в пространстве

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Сумма нескольких векторов. Коллинеарные векторы. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Разложение вектора по трем некомпланарным векторам.

Метод координат в пространстве. Движения.

Прямоугольная система координат в пространстве. Векторы и координаты в пространстве. Сложение векторов. Умножение вектора на число. Простейшие задачи в координатах. Формула для вычисления расстояния между точками в пространстве.

Угол между векторами. Скалярное произведение векторов в координатах. Скалярное произведение векторов.

Центральная симметрия, осевая и зеркальная симметрия, параллельный перенос.

Цилиндр, конус и шар

Понятие цилиндра, конуса. Изображение тел вращения на плоскости. Представление об усечённом конусе, сечениях конуса (параллельных основанию и проходящих через вершину), сечениях цилиндра (параллельно и перпендикулярно оси), сечениях шара. Развёртка цилиндра и конуса. Площадь поверхности цилиндра, конуса, усеченного конуса и шара. Уравнение сферы в пространстве. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере.

Площадь сферы. Многогранники, вписанные в сферу.

Объёмы тел.

Понятие об объёме. Объём прямоугольного параллелепипеда, прямой и призмы, цилиндра. Вычисление объёмов тел с помощью определенного интеграла. Объём наклонной призмы. Объём пирамиды, конуса, усеченной пирамиды и усеченного конуса. Объём шара, шарового сегмента, шарового слоя и шарового сектора.

3. Тематическое планирование

Алгебра и начала математического анализа 10 класс

№	Содержание учебного материала	Количество часов
1.	Повторение курса алгебры 7-9 классов -	4
2.	Действительные числа	12
3.	Степенная функция	11
4.	Показательная функция	12
5.	Логарифмическая функция	14
6.	Тригонометрические формулы	16
7.	Тригонометрические уравнения	13
8.	Тригонометрические функции	9
9.	Повторение, обобщение и систематизация изученного	11
	материала.	
	Итого	102

Алгебра и начала математического анализа 11 класс

$N_{\underline{0}}$	Содержание учебного материала	Количество
		часов
1.	Повторение курса 10 класса	3
2.	Производная и её геометрический смысл	15
3.	Применение производной к исследованию функции	13
4.	Первообразная и интеграл	11
5.	Комбинаторика, статистика и элементы теории вероятностей	15
6.	Повторение, обобщение и систематизация изученного материала курса 10-11 класс	11
	Итого	68

Геометрия 10 класс

No॒	Содержание учебного материала	Количество уроков
1.	Введение. Предмет стереометрии. Аксиомы стереометрии	5
2.	Параллельность прямых и плоскостей в пространстве	18
3.	Перпендикулярность прямых и плоскостей в пространстве	16
4.	Многогранники	14
5.	Векторы в пространстве	10
6.	Итоговое повторение изученного материала курса	5
	геометрии 10 класса	
	Итого	68

Геометрия 11 класса

No	Содержание учебного материала	Количество часов
1.	Метод координат в пространстве	16
2.	Цилиндр, конус, шар	19
3.	Объемы тел	25
4.	Повторение, обобщение, систематизация и контроль полученных знаний.	8
	Итого	68